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The design is based on the requirements of thermal stability for the mesh as a plate of  reduced rigidity and 

strength of  a panel according to the scheme of a U-shaped frame. 

1. The working element of metal mesh fire nozzles of gaseous infrared radiation burners is a panel that is 

a densely perforated plate with holes of a given shape (see Fig. 1). Here xy is the coordinate plane located in the 

middle plane of the plate; L1, L2 are the dimensions of the working field of the panel (/,2 ___ L1); b, )].b are the 

dimensions of a rhombus-shaped hole; 2 >_ 1 is the elongation parameter of the rhombus. Owing to the linearity of 

the perforation figures, the region occupied by the material consists of a set of crossed rectilinear rods rigidly fixed 

at the nodes. 

We use the following notation: l, the length of the rod of a cell (measured along the middle line of the 

contour); h, 6, the dimensions of the cross section of the rod (6 corresponds to the thickness of the mesh); 90, the 

area ratio. From the geometry of the cell we obtain 

h =  b 2 ( 1 - ~ )  (1) 
x / - ;  ' 

Fr = h6 is the cross-sectional area of the rod, fl = arctan 2, y = arctan ( l / t ) .  
2. We assume that, while in use, the mesh is heated uniformly. Along the outer contour it is framed by the 

burner casing. Actually, the mesh is fixed nonrigidly in the burner casing. In calculations of the working 

(temperature) stresses that cause the panel to lose stability, we will neglect the deformation of the casing. 

Owing to the thermal and geometric symmetries of the problem the nodes of the mesh are stationary. This 

implies that the elongations of the rods are equal to zero: 

a l  = o .  (2) 

Condition (2) yields a formula for the stress P compressing a rod: 

P = E ( T )  F r a  r e ( T - T 0 ) ,  (3) 

where E(T)  is Young's modulus of the mesh material at the working temperature T, a m is ihe mean coefficient of 

linear expansion; TO is the initial temperature (the temperature at which the burner is mounted), whose value is 

neglected in what follows. 
On the basis of Eq. (3) we find the pressure on the casing from the side of the mesh and conversely, on 

the mesh from the casing. The intensity of the latter is determined by means of the formulas 

2Earn Th cos fl (4) 
ax = 2b + h' ' aY = g' ax" 

Here 
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Fig. 1. Calculational scheme for the panel. 

Fig. 2. Domain of values of the coefficient K x. 
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h', h"  are geometric parameters (Fig. 1). 

From an analysis  of Eq. (5) it follows that for actual 

1 < 2 _< 1.5 the values of ~p lie within the range 

gas burners with 0.5 _< h <__ 1.5 mm and 

1 _< W ~ 2 .  (6) 

3. To investigate the thermal stability of the mesh, we will determine its rigidity characteristics, performing 

their evaluation on the basis of the flexural strains of the mesh. The cylindrical rigidities per unit length of the 

plate are determined from the formulas [1 ] 

O X 

E (T) h'6 3 

t2 (2b + h ' ) '  

6 (T) h"a 3 
oy = 12 (b + h")" 

Taking into account the actual variability of the flexural rigidities along the x, y axes and the compatibility 

of the flexural strains in two mutually perpendicular directions, it is worthwhile to turn to consideration of an 

isotropic plate with a certain reduced rigidity D: We will take the energy balance as the criterion for the equivalence 

between the rigidities of the orthotropic and isotropic plates. This yields 

D = 2DxDy 
D x +  Dy" 

4. The solution of the problem of the thermal stability of the panel is reduced to integration of the 

differential equation describing the deflection of the plate under the loadings (4) uniformly distributed over the 

edges of the plate (Fig. 1) [2 ]: 

_ _  02W D 02W + Cry - -  0 
-~ V 4 W  + r x Ox 2 Oy 2 - , 

(7) 

where V 4 is the biharmonic operator; W is the bending deflection function. 

In selecting boundary conditions, we proceed from the most unfavorable scheme of attaching the plate along 

the contour - a movable hinge. In this case, we obtain the least of the possible critical temperatures, and this will 

contribute to the stability margin. 
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We seek the solution of Eq. (7) in the form 

m~x n~y 
W = Amn sin ~ sin L--~- 

Following [2 ], we obtain formulas for determining the critical stresses: 

_ 3r2D 

Crxc r = K x L--~I ~ ' Crycr = ~ aXcr" 

Here 

(8) 

+ ~n  L1 

(9) 

The coefficient Kx in Eq. (8) must assume the smallest values. In Fig. 2 its values are given as functions of co for 

the range of g, in (6). 

Formulas (4) and (8) yield a relation for determining the critical temperature Tcr: 

2 zc D 2a m Tcr h cos fl 

Kx - + h '  

(10) 

where 

TcF 
- -  D 
D = - ~ ;  amTcr = f a ( O d r .  

o 

The condition for maintenance of the stability of the plate is 

T < Tcr /ny ,  (11) 

where ny is the adopted coefficient of the stability margin. 
Assuming a(T)  = a 0 + a lT ,  on the basis of Eq. (11) we obtain from Eq. (10) a condition that should be 

satisfied by the length of the short side (width) of the gas burner panel to maintain its stability at the working 

temperature T: 

/ * * 4 /G 2 (;lb + h') (12) 
L1 -< L1 ' L1 = 28h cosfl [CtonyT+ 0.5a I (nyT) 21 

To ensure the stability of the panel, it is necessary to design burners with a width L 1 not exceeding the 
limiting dimension L~, i.e., to make them as square as possible. The latter statement follows from an analysis of 

formula (9) and relation (10). From these relations it also follows [3] that with an increase in co (co _> 5) loss of 

stability of the panel is possible with formation of more than one half-wave along the long side. With a further 

increase in 09 (co >_ 10) the length of the half-wave tends to approach the width L 1. Thus, the bulging panel is 

divided approximately into squares. 
Consequently, in designing polygonal-type burners it is worthwile to divide the latter by rigidity ribs into 

"pads" approximating squares with a side/2 <_ L1 (Fig. 3). Moreover, the condition of the stability of the panel (12) 

should be fulfilled. 
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Fig. 3. Polygonal-type panel in plan. 

,, Pad" t?~gtd~ 0 r~b 
1 / 

/ 
m 

/ 

2 

II 1 2 

ff'r 

Z~'~WeLded joints 

X 

N 

Fig. 4. Mosaic-type panel in plan. 

If condition (12) is not fulfilled, the polygonal scheme must be rejected, and a panel of mosaic type should 

be designed with "pads" having the dimensions (Fig. 4) ll = L1/M, 12 = L 2 / N ,  where N and M are respectively 

equal to the ratios N = L2 /L~ ,  M = L 1 / L  ~ rounded off to the larger side to an integer. 

Technically, the formation of a "pad" is done by deep drawing (stamping). After the drawing of "pads" the 

latter constitute a boxlike U-shaped construction of height H. Structurally a "pad" consists of three meshes, with 

two of these being point-welded to each other [4 ]. The calculation of the parameters ll, 12 is made independently 

for each of the three mesh that make up the panel of the gas burner. Ultimately it is assumed that l 1 and 12 are 

the smallest of the required dimensions and are identical for all three meshes (Figs. 3 and 4). 

5. To estimate the temperature stresses in a "pad," we consider the latter to be a plane rectangular frame 

jammed at the bases of the racks. The frame is doubly statically indeterminate. Its parameters are: D, flexural 

rigidity; H, height of a rack (amount of drawing); l, length of a cross-bar (the dimension of the "pad" in plan, i.e., 

li or 12; in the case of a square pad li = 12 =/) .  
We will perform the expansion of the static indeterminacy by the method of forces [5 ]. We solve the problem 

with account for the thermal expansion of the casing, neglecting its elastic compliance. 

The greatest normal stress in the frame due to the thermal effect occurs at the base of the racks and is 

determined by the formula 

3E6l  (H  + l) (amT - acTc) (13) 
Crmax = 2tt 2 (H + 2/) ' 

where a c is the mean coefficient of linear expansion of the casing material; T c is the heating temperature of the 

casing. If we neglect the thermal expansion of the casing, it should be assumed in formula (13) that a c t  c = 0. 
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The field of stresses in the "pad" due to the thermal effect is superimposed by the field of residual stresses 

resulting from the stamping. Since the operation of drawing is accompanied by annealing of the mesh, which relieves 

these residual stresses, the latter are not involved in strength calculations. It follows from the above that the 
maximum level of stresses in a "pad" is determined from formula (13). For a "pad" that is rectangular in plan we 

should assume in formula (13) that l = max {ll,/2}- 
The static condition of strength of the panel has the form 

ama x _< [a ],  (14) 

where [a ] is the admissible stress for the working range of temperatures. 
Apart from a checking calculation for strength using condition (14), it is possible to carry out des ign  

calculations consisting in the determination of the safe amount of drawing (the choice of the dimension H) from 

the equality amax = [a]. 
Thus, the procedure described above makes it possible to perform checking and design calculations of the 

panels of metal mesh fire nozzles of infrared radiation burners. 

N O T A T I O N  

xy, coordinate plane; L1, L2, dimensions of the working field of the panel; b, ~tb, dimensions of the hole; 
~, parameter of elongation of the rhombus; l, h, 5, linear dimensions of the rod of a cell; Fr, cross-sectional area 

of the rod of a cell; t ,  7, angular parameters of a cell; ~, area ratio; P, stress; E, Young's modulus; am, ac, mean 
coefficients of linear expansion; T, TO, working and initial temperatures of the burner; ax, ay, intensity of stresses; 
h', h",  geometric parameters; Dx, Dy, D, rigidity; W, bending deflection function; Amn , integration constants; ~, 

Kx, coefficients; Tcr, critical temperature; ny, coefficient of the stability margin; L~, limiting dimension of the panel; 

/1, 12, dimensions of the "pad"; To, temperature of the casing; amax, maximum stress; [a], admissible stress. 
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